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Abstract 

With the help of conditional probabilities formulas are 
derived for the first and second moment of R2 as a 
function of the size of the model. The formulas are valid 
in the space group P1 for two extreme cases, viz 
completely correct and completely incorrect models. 
Incorporation of the observed intensities enables one to 
obtain accurate a priori estimates of (R2> and a(R2). 
The theory agrees very well with simulated 
experiments. 

I. Introduction 

In automated structure determinations of single 
crystals, one may use the mathematical residual 
function R z to discriminate between correct and 
incorrect models. The applicability of R 2 as a dis- 
criminator function increases sharply if one has at one's 
disposal an a priori evaluation of its average value and 
spread. That is to say, in order to be able to use 
statistical decision methods in an automated analysis 
one needs to know for the crystallographic situation at 
hand either the probability distribution of the residual 
Rz or the moments of this distribution. 
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Until recently, the assumption of an infinite data set 
allowed only the prediction of the first moment (mean 
value) but precluded the evaluation of the higher 
moments. The break-through came with the intro- 
duction of the calculus of conditional probability. In 
part I (Van Havere & Lenstra, 1983) we laid down the 
general principles of the new theory and derived 
expressions for the first and second moments of the 
probability density function of the residual R2 for 
completely correct and completely incorrect structure 
models in space group P 1. The results for P 1 may serve 
as a model for all primitive non-centrosymmetric space 
groups. In this paper we will derive similar expressions 
tor space group P 1, which may serve as a parent for all 
primitive centrosymmetric space groups. 

2. Moments o f R  2 

Throughout this work E o will refer to the observed 
magnitude of the normalized structure factor belonging 
to a structure containing N atoms in the asymmetric 
unit. Likewise E c will refer to the calculated magnitude 
of an E value of a model containing n atoms in the 
asymmetric unit. The definition of R 2 is 

R 2 - ~. (E2o- tf  E2c)2/~. E 4 (2.1) 
H H 
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with 112 describing the fraction of the scattering power 
of the model versus the total structure: 

r/E- r/E/r/2. (2.2) 

Taking point atoms of equal scattering power, r/2 
becomes n, the number of atoms in the model, and r/2 
becomes N, the number of atoms in the asymmetric part 
of the unit cell. The reciprocal vector H = (h,k,l) can 
span any subset of the total space. The normalized 
structure factors are defined as 

N 
Eo -- Eo(H) = (2/N) ~/2 Y cos (2rdarrj). (2.3) 

j = l  

We take over the approximations and apply the 
mathematical machinery already developed (Van 
Havere & Lenstra, 1983). Since full details on the 
derivation can be found in our previous article we will 
here only sketch briefly the argument. 

For the space group P1 one can write 

Eo(E~,Eo) Z <E4c'~o) Z 2 2. 
H H (R2;go> = 1 + r/4 - 2 / I  2 

Z Eo 4 Z E4o 
H H 

and 

a2(Rz;go)= q ~\ c o / -  

(2.4) 

4r/6 2 6. Eo((Ec;Eo) 
H 

4. 2. - (Ej~o)<Ec.¢Eo)) 

+ Y 4 ~  4 4. E2E 2 I Eo((Ec'~o>-- ( c; o> ) 
H ) 

x E , (2.5) 

where ~e o is the set of observed structure factors as used 
in the calculations. The notation (En'~o) means the 
value of E~ averaged over the coordinates of the model 
in direct space under the constraint of Eo. With (2.4) 
and (2.5) the problem of finding the moments of P(R2) 
is shifted to finding the moments of the conditional 
intensity distribution P(Ej, Eo). We will do so for the 
limiting cases of a completely incorrect and a com- 
pletely correct model. 

2.1. Incorrect models 
An incorrect model is characterized by the absence 

of any correlation between the set of observed structure 
fac tors  and the set of calculated structure factors 
belonging to the (partial) model. Therefore 

(En;Eo) = (E~). (2.1.1) 

The moments of E~ can be obtained either directly by 
averaging the structure-factor equations over direct 
space assuming equal probability for all points in this 
space, or by using intensity distributions derived by 
Wilson (1949). Wilson, assuming a large number of 
atoms evenly distributed in the asymmetric part of the 
unit cell, has shown that for space group P 1 one gets 

P(E~) = (2/z0 '/2 exp (-E~/2). (2.1.2) 

The moments are given by (Shmueli, 1982) 

(E 2") = 2 ' - "  ( 2 n -  1)! 
( n - - l ) !  ' n = 1 , 2 , 3 ,  . . . .  (2.1.3) 

Substitution of (2.1.3) into (2.4) and (2.5) yields 

(RE;~'o)={~z(E4-2rlEE2+3rl4)}/~E4 o (2.1.4) 

and 

a2(R:;~'o) = ( 8 ¢  E4o - 48r/6 Eo 2 + 96r/s) Eo 4 

(2.1.5) 

2.2 Correct models 
In a completely correct model observed and cal- 

culated structure factors are correlated. Now, starting 
from the conditional probability function P(Eo;Ec) 
derived by Srinivasan & Parthasarathy (1976), em- 
ploying Bayes theorem and using marginal distribution 
functions P(Ec) and P(E o) of the form of (2.1.2), one 
finds 

( 2r12 "/z { - rlEc E2° + rl2° l exp 
P(Ej'E°) = 7C(rl2o- rio)] 2(r/o 2 -  r/i) 

× cosh t ) 

Since we are using asymptotic conditions in the number 
of atoms, the following formulas are strictly speaking 
only valid in situations in which total structure, partial 
model and difference structure are all large. Following 
arguments presented in Appendix A, we derive for the 
moments of (2.2.1) 

2,. ( 2 n - 1 ) !  2,_,(r/ ,z-r/c2)" 

' E ° ) - ( n -  1)! r/o z 

(_  1 1 r/~ZE°2) (2.2.2) 
× , F ,  n ;~ ;  2 r/o 2- r /~  z ' 

for n = 1, 2, 3 , . . . ,  

in which ,F, is a confluent hypergeometric function. 
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Substitution of the relevant moments of (2.2.2) into 
(2.4) and (2.5) gives 

<R2;~eo> = (~ Eo4(~- 2r/4 + I) 

+ ~ Eo2(6~ - 2~1(1 - r/21 
H 

and 

G2(R2;ff°) -- {~ E°6(16r/14 - 

(2.2.3) 

32r/z° + 16r/6)(1 -- r/2) 

+ ~ E4(168r/'2 _ 144r/s + 8 r / 4 ) ( 1  - -  r /2) 2 
H 

+ ~. E2(384r/'° -- 48r/6)(1 - / / 2 ) 3  
H 

+ y. 9 6 r ~ ( 1 -  ~2)4 E . (2.2.4) 
H 

The path of <R2) and a(R2) in a generalized case can 
be seen from Figs. 1 and 2. 

t 0 ~  R2 (incort) 

011.. i 'ii  
0 0,5 1.0,12 

Fig. 1. (Rz) as a function of the model size. The summations 
\ n E o are replaced by <Eo n) as found from equation (2.1.3). 

2,G 
. R2(mcorr] 

tO. 

0 
0 QS t~) r/2 

Fig. 2. o'(R2) as a function of  the model size. 

3. Verification 
Using simulated observed structures one avoids any 
systematic pecularities of a real structure and thus 
disagreements between theory and experiment  can be 
uniquely attributed to flaws in the theoretical argu- 
mentation. The applicability of the theory depends, of 
course, on the robustness of its results towards the very 
pecularities of real structures which are disregarded in 
the theory. In the preceding paper (Van Havere & 
Lenstra, 1983) we have demonstrated that for space 
group P1 the theory is in excellent agreement with 
calculations based on simulated structures as well as on 
a real structure. Here, we confine ourselves to test the 
theory against simulated structures. 

In our example the observed structure is a set of 100 
atomic positions randomly placed in the asymmetric 
part of the unit cell, with a corresponding set of 1530 
observed reflections. The atoms are taken as point 
atoms with equal scattering power. To test the theory 
for completely incorrect models, 10 000 independent 
and thus completely incorrect models were generated 
with n (n _< 100) randomly placed atoms in the 
asymmetric part of the unit cell. Substitution of their E c 
values into (2.1) gives R2(exp). (RE(exp)) was obtained 
by averaging over the 10000 trials. Furthermore, 
cr2[R2(exp)] can be calculated as 

{e~p [R2(exp)]2-[ Z R2(exp)] 2) x 10 -4. (3.1) 
exp 

Table 1 gives the comparison of <R2(exp) ) and 
tr2[R2(exp)] with (R2(th)) and a2[R2(th)], calculated 
from (2.1.4, 5). 

The theory for completely correct models was tested 
using the same simulated structure as before, but 
restricting the set eo to 70 reflections. Random samples 
of n (n _< 100) correct atomic positions were selected to 
represent the models and to compute the E c values. As 
in the previous case, substitution into (2.1) gives 
R2(exp), while <R2(exp)> and o2[R2(exp)] were ob- 
tained after 100 000 of such trials for each n. Table 2 
gives the comparison of (R2(exp)) and o2[RE(exp)] 
with (R2(th)) and aE[R2(th)], calculated from (2.2.3, 
4). The choice N = 100 and the number of reflections 
used (1530 or 70) is purely arbitrary. Experience has 
shown that the number of trials (10 000 for incorrect 
and 100 000 for correct models) is large enough to 
achieve convergence for both the average and the 
spread. 

The values given in Tables 1 and 2 show a very 
satisfactory agreement between theory and simulated 
experiments. They allow the conclusion that the 
formalism and the derived formulas are correct. The 
small discrepancies that are left can, as was demon- 
strated earlier (Van Havere & Lenstra, 1983), be 
attributed to the use of asymptotic intensity distri- 
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Table 1. Comparison for incorrect models of (R2(exp) ) 
and tr2[R2(exp)] with theoretical values 

n (R2(th)) (R2(exp)) o2[R2(th)l o2[R2(exp)] 

o 1.oooo 1.oooo o.ooooo o.ooooo 
1 0.9414 0.9408 0.00001 0.00001 

20 0.9045 0.9033 0.00006 0.00006 
30 0.8892 0.8875 0.00013 0.00013 
40 0.8955 0.8934 0.00026 0.00026 
50 0.9235 0.9208 0.00049 0.00050 
60 0-9731 0.9702 0.00089 0.00092 
70 1.0448 1.0412 0.00154 0.00162 
80 1.1374 1.1335 0.00254 0.00272 
90 1.2520 1.2469 0.00402 0.00430 

100 1.3883 1.3827 0.00613 0.00668 

Table 2. Comparison for correct models of (R2(exp)) 
and tr2[R2(exp)] with theoretical values 

n (R2(th)) (R2(exp)) 02[R2(th)] 02[R2(exp)] 

o I.OOOO 1.oooo o.ooooo o.ooooo 
25 0.8221 0.8225 0.00472 0.00428 
50 0.5855 0.5876 0.01300 0.01232 
75 0.3021 0.3042 0.00793 0.00763 

100 0.0000 0.0000 0.00000 0.00000 

butions for a finite number of atoms and to a lesser 
extent to the elimination of double summations in (2.5). 
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A P P E N D I X  A 

The moments of the intensity distribution given in 
(2.2.1) are defined as 

<EUc'rEo> = (. ?/,]02 )1,2 

\.(r/o' - r/J) 

x / Ec" exp 
2(r/o- qe) ] 

[ r/o r/c Eo Ec] 
x c o s h  - 5 - - ~  " dEc" (A.1) 

Using the identity (Bateman, 1953, II) 

cosh ( z )=  (rcz/2) 1/2 I_l/2(z), (A.2) 

equation (A. 1) can be transformed to 

r/Sor/cEo ]I/2 
(E~;eo> = (r/o ~ - ~ 2  -r/c) ] 

oo [ _  2 2 2 2.] r/c Eo + r/o Ec 
x f E "+u2exp 2) 

o 2(1/o 2 -  r/c 

x I 1/2 " 3 - -  .--S " dEc" (A.3) 
l 

Using a generalization of Weber's first exponential 
integral (Bateman, 19 5 3, II), 

oo 
f Jv(at)exp (_p2 t 2) t . -1 dt 

2 p " F ( v +  1) ~F~ v + ½ g ; v +  1;--  , 

R e ( v + # ) > 0 ,  a E C ,  Re(p  2 ) > 0  (A.4) 

together with the identity (Bateman, 1953, II) 

/~(z) = exp (-i½vzO Jv[z exp (iz~/2)] 

- zr < arg (z) < M2 (A.5) 

and Kummer's  first transformation (Bateman, 1953, I) 

~Fl(a;b;x) = eX~Fl(b - a; b; - x), (A.6) 

we can write equation (A.3) as 

(EcU;Eo) - F(  lU--~) r/2 _ r/2) tt/2 

(- x 1Fl __#__~. 1. 1 r/~._E o (A.7) 
' ' 2 2 ' 2 2 2 r/o-r/c] 

which, using the identity (Bateman, 1953, I) 

r(u + ½)= 2 ('-2") r(2u) (,4.8) 
r(u) 

and taking/t = 2n, n = 1, 2, 3 , . . . ,  reduces to 

2,. (2n - 1)' 2(,_n) ( r/2 - r/2) n 
(Ec ' E ° ) -  ( n -  1)! r/o 2 

1 1 _r/e_E_o .] (A.9) 
X IFI n; ~; 2 r/o - r/e ] 2 2 " 

As can be seen from the definition of iF1 (Bateman, 
1953, I), 

a x a(a + 1) x 2 
iFl(a;b;x) = 1 + - - - +  + . . . ,  (A.10) 

b 1! b(b+ 1) 2! 

the moments reduce in our case to an nth-degree 
polynomial in x, because a is a negative integer. For 
instance, the fourth moment can be written as 

(E~',Eo) = ~ E4o + 6r/2(1 - r/2) Eo 2 + 3(1 - ~2)2. 
(A.11) 
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